Introduction to Database
Systems

CSE 444

Lecture #9
Jan 29 2001

Announcements

#Mid Term on Monday (in class)
Material in lectures
HTextbook

XIChapter 1.1, Chapter 2 (except 2.1 and ODL),
Chapter 3 (except 3.2, 3.8), Chapter 4.1, 4.5, 4.6,
Chapter 5 (except 5.10), Chapter 6.1, 6.2, 7.1, 7.3

=IMid Term will be in class closed book exam
3 Extra Office Hours

RSurajit (Today) 4.50-5.50

KYana Thu 4.30-5.30
3 Solution to HW#1 available

Decomposition: Schema
Design using FD

Reading: Chapter 3.6, Chapter 6.1,
Chapter 6.2

Review: Closure, Key,
Superkey

3Given a set of attributes M over R(A), and
a set of Fds on R, closure(M) is the set of
all attributes L such that M->L

$BIf Closure(M) = A, then M is a superkey

#M is also a key if no proper subset M’ of
M satisfies closure(M")=A
RSuperkey: A set of attributes containing key

Review: BCNF

38 A relation R(A) is in BCNF if for every nontrivial
dependency X->Y on the relation R, X is a
superkey

&Every 2-column relation is in BCNF. Why?
HRelation in BCNF does not have update or deletion
anomalies

38 If relation R(A) violates BCNF, decomposition is
needed
HHow to find a FD that violates BCNF?

ICheck Closure(X) of every FD X->Y in the given set
of dependency

Decomposition Requires
Care

Name Category Price Category
Gizmo Gadget 19.99 Gadget
OneClick Camera Q 24.99 Camera
DoubleClick Camera — 29.99 Camera
Name Price Sategor

Gizmo 19.99 Gadget
When we put it back: OneClick | 24.99 | Camera
OneClick 29.99 | Camera
Cannot recover information | poubleciick | 24.99 | camera
DoubleClick | 29.99 | Camera

Decomposition Strategy
for BCNF

Find a FD that violates the BCNF condition (RHS =
all nontrivial attributes functionality determined by LHS):

ALA, ... A, — BB ... Bm

R1 R2

Example

3 Movie (title, year, studio,president, pres_addr)
RIS = {Title, year -> studio,
studio -> president, president->pres_addr}
#Violating FD: studio -> president, pres_addr
¥ Decompose: Studiol(studio, president,
pres_addr), Moviel(title, year, studio)
3 1Is Studiol in BCNF?
RWhat are applicable FD-s on Studiol?

Projecting FD

#Given F over R, what is the FD that must hold
over R’, where R’ is obtained by decomposition?
& Compute closure(X) for each subset X of R’
#X-> B holds in S if
BB in R’
&IB in closure(X)
AIB not in X
3 See Examples 3.39 and 3.40 in text

Example: Projecting FD

#R(A,B,C,D,E) decomposed into S(A,B,C)
and ..

$8FD on R: A->B, B->E, DE->C
#¥Closure(A) =?
#¥Closure(B)="?

#8Closure(C) = ?
3#Closure({A,B}) =?

Decomposition Based on BCNF is
Information Preserving

Attributes A, B, C. FD: A— C

Relations R1[A,B] R2[A,C]

Tuples in R1: (a,b), (a,b")

Tuples in R2: (a,c), (a,c)

Tuples in the join of R1,R2: (a,b,c), (a,b,c"), (a,b’,c), (a,b’,c’)

Can (a,b,c’) be a bogus tuple? What about (a,b’,c") ?

Decomposition into BCNF is
Not Dependency Preserving

38Street, city -> zip, zip -> city

F8Key: (street,city), (street,zip)

8 Consider (Street,zip) and (zip,city)
IHow to check street, city -> zip?
&INot dependency preserving!

$3NF
&Allow FD if LHS is part of a key (prime)

Problems with
Decompositions

3 There are three potential problems to consider:

¥ Some queries become more expensive.
Xle.g., find employee and department names
@ Given instances of the decomposed relations, we
may not be able to reconstruct the corresponding
instance of the original relation!
BChecking some dependencies may require joining
the instances of the decomposed relations.
#¥Tradeoff: Must consider these issues vs.
redundancy.

Summary of Schema
Refinement

$If a relation is in BCNF, it is free of redundancies that
can be detected using FDs.

3 1If a relation is not in BCNF, we can try to decompose

it into a collection of BCNF relations:

ALossless-join decomposition into BCNF is always possible

HLossless-join, dependency preserving decomposition into
BCNF is not always possible Lossless-join, dependency
preserving decomposition into 3NF /s always possible

ADecompositions should be carried out and/or re-examined
while keeping performance requirements in mind.

RVarious decompositions of a single schema are possible.

Constraints and Triggers

Reading: Section 6
(MidTerm: 6.1 and 6.2 only)

Constraints

¥A constraint = an assertion about the
database that must be true at all times

¥Part of the database schema

¥ Correspond to /nvariants in programming
languages

Constraints

8 CREATE TABLE movie_titles
H(title CHARACTER(30) NOT NULL,..)

38 CREATE TABLE distributor
R(dist_name CHARACTER(30) UNIQUE,..)
®May be NULL

8 CREATE TABLE movie_titles
H(title CHARACTER(30) PRIMARY KEY,..)
EUnique and not null

$8 CREATE TABLE movie_stars

&(movie_table CHARACTER(30) NOT NULL
REFERENCES movie_titles,..)

EIMany-one (mapping must exist) 17

SQL for Keys and Reference Keys

CREATE TABLE Books (
isbn CHAR(11),
title CHAR(20),
pubname CHAR(25),
pubdate DATE,
PRIMARY KEY (isbn),
FOREIGN KEY (pubname) REFERENCES Publishers (name))

Declaring Keys and
Foreign Keys

FComposite Key Syntax
HPrimary Key (coll, col2)
RUnique (col3)
FForeign Key Syntax
Foreign Key <attributes> REFERENCES
<table> (<attributes>)
EINon-NULL value in Foreign Key must be
present in the reference table

Enforcing Constrainrts

3 Key constraint
Check on update/insert
RUse indexes for efficient validation
J6 Referential constraint
RDefault: Reject modifications that violate constraint

[RCascade: Delete referencing rows
XIDelete movie => movie_stars deleted

[Set Null: Set referencing column value to NULL

Example

3CREATE TABLE Studio (
*

$8presC# INT REFERENCES
MovieExec(cert#)
[=AION DELETE SET NULL
=ION UPDATE CASCADE)

CHECK Constraint

3 CHECK(search-condition)
#8Like Where clause in Selection queries
¥ Value-based check
[A..CHECK (movie_type IN (‘Horror’, ‘Thriller’,..))
3 Simple check
[A.. CHECK (cost < 100 and cost > 0)
HUse to verify min/max/set of intervals
3 Complex

[&l.. CHECK (cost < (select max(price) from
Walmart_Store))

ASSERTIONS

3 Not attached to table declaration
38 Specifies a multi-table constraint
8 CREATE ASSERTION max_inventory
BICHECK ((SELECT SUM(movie_cost) From Movies) +
(SELECT SUM(music_cost) From Music) < 1000))
38 Database must satisfy assertions at all times

& Tuple constraint enforced only when table is not
empty

Deferrable Constraints

3By default, constraints are checked at the
end of each SQL statement

A DEFERRABLE constraint is checked only
when the transaction is committed

TRIGGERS

3 Tells what followup actions to take after
execution of a SQL
8 CREATE TRIGGER NetWorthTrigger
EAFTER UPDATE of networth ON MovieExec
WREFERENCING OLD AS ot NEW AS nt
AWHEN (ot.NetWorth > nt.NetWorth)
RIUPDATE MovieExec
HISET NetWorth = ot. Networth
®WHERE ...
AIFOR EACH ROW .. Tuple vs. statement granularity

Privileges, Users, Security

Reading: Chapter 7.4

Granularity of AC

#GRANT privilege_list
8 ON object
$TO user_list [WITH GRANT OPTION]
38 Privilege_list
RSelect, Insert, Delete, Update, References, Usage
3 Object
RTable, Columns, Views, Domains, Transactions..

Examples

¥GRANT SELECT ON movie_titles TO
PUBLIC

$GRANT REFERENCES (title) ON
movie_titles TO USER1

3 GRANT SELECT ON movie to kirk
¥WITH GRANT OPTION
¥GRANT SELECT ON movie to Rob

REVOKE

F¥REVOKE <privilege list> ON <database
element> FROM <user list>

[RICASCADE: All privileges granted based on
revoked privileges are withdrawn

RIRESTRICT: Allows execution of REVOKE only
if there is no implied CASCADE

$REVOKE GRANT OPTION FOR
3BFollow examples 7.24-7.26

Concurrency Control I:
Transactions, Schedules,
Anomalies

Why Have Concurrent
Processes?

3 Better throughput, response time

3 Done via better utilization of resources:
EWhile one process is doing a disk read, another can
be using the CPU or reading another disk.
¥ DANGER DANGER! Concurrency could lead
to incorrectness!
Must carefully manage concurrent data access.
HThere’s (much!) more here than the usual OS tricks!

Transactions

38 Basic concurrency/recovery concept: a
transaction (Xact).

A sequence of many actions which are
considered to be one atomic unit of work.

JDBMS “actions”:
&(disk) reads, (disk) writes
AISpecial actions: commit, abort

The ACID Properties

$BA tomicity: All actions in the Xact happen, or
none happen.

38C onsistency: If each Xact is consistent, and
the DB starts consistent, it ends up consistent.

38 I solation: Execution of one Xact is isolated
from that of other Xacts.

8 Durability: If a Xact commits, its effects persist.

Passing the ACID Test

& Concurrency Control

HGuarantees Consistency and Isolation, given

Atomicity.

#Logging and Recovery

RGuarantees Atomicity and Durability.
¥We'll do C. C. first:

EWhat problems could arise?

BWhat is acceptable behavior?

H®How do we guarantee acceptable behavior?

Schedules RA)
WA)

38 Schedule: An interleaving of actions RE)
from a set of Xacts, where the actions W)
of any 1 Xact are in the original order. R©)

database actions.

EExample: R (A), W1(A), Ry(B), W,(B),
RL(C), W,(C)

BIn a complete schedule, each Xact ends in
commit or abort.

3 Initial State + Schedule - Final State

[Represents some actual sequence of W(O)

I T

Acceptable Schedules

3 0ne sensible “isolated, consistent” schedule:

[AIRun Xacts one at a time, in a series.

&IThis is called a serial schedule.

INOTE: Different serial schedules can have different
final states; all are “OK” -- DBMS makes no guarantees
about the order in which concurrently submitted Xacts
are executed.

38 Serializable schedules:

[&IFinal state is what some serial schedule would have

produced.

HAborted Xacts are not part of schedule; ignore them for
now (they are made to " disappear’ by using logging).

Transactions:
Serializability

processes

order(3) Read: g=4| OK

) e o

t ©2 13 iz

time

uantity=4 .
d Y quantity=-2 ?7?7%?

transfer | add 6%

- - ags - = _ $100 from | interest to
Serializability Violations |1c«s
T1 T2
R(A)
¥ Two actions may conflict when 2 W(A)
xacts access the same item: % R(A)
EIW-R conflict: T2 reads something
T1 wrote; T1 still active - W(A)
N Database is
BIR-W and W-W conflicts: inconsistent!} R(B)
Similar. W(B
F¥WR conflict (dirty read): ® .
AResult is not equal to any serial Commit
execution! R(B)
HIT2 reads what T1 wrote, but it
shouldn’t have!! W(B)
Commit

More Conflicts

TL R() R(A), C
T2 R(A), W(A), C

Again, not equivalent to a serial execution.
#EWW Conflicts (Lost Update)
T2 overwrites what T1 wrote.
T W(A), W(B), C
T2 W(A), W(B), C
RUsually occurs with RW or WR anomalies.
XlUnless you have “blind writes” (as here).

Now, Aborted Transactions

#8Serializable schedule: Equivalent to a
serial schedule of committed Xacts.
Rlas if aborted Xacts never happened.
3 Two Issues:
IHow does one undo the effects of a xact?
XIWe'll cover this in logging/recovery
RIWhat if another Xact sees these effects??
XIMust undo that Xact as well!

I T2

Cascading Aborts R(A)

W(A)

38 Abort of T1 requires abort of T2! R(A)

R Cascading Abort W(A)
¥ What about WW conflicts & aborts?

[AIT2 overwrites a value that T1 writes. abort

[IT1 aborts: its “remembered” values are reswred:

[ElLose T2's write! We will see how to solve this, too.
#8An ACA (avoids cascading abort)

schedule is one in which cascading abort cannot

arise:

[AIA Xact only reads data from committed Xacts.

. 12
Recoverable Schedulesr®
W(a)
| R(A)
8 Abort of T1 requires abort of T2! WA
&IBut T2 has already committed!)
38 A recoverable schedule is one in commit
abort

which this cannot happen.

Hi.e., a Xact commits only after all the Xacts it reads
from commit.

AIACA implies Recoverable (but not vice-versa!).
38 Real systems typically ensure that only
recoverable schedules arise (through locking).

COMMIT and ROLLBACK

#Can end a database operation in two
ways:
RIEXEC SQL COMMIT;
WIEXEC SQL ROLLBACK;

43

