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Introduction to Database 
Systems

CSE 444

Lecture #9
Jan 29 2001
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Announcements
aMid Term on Monday (in class)
`Material in lectures
`Textbook
⌧Chapter 1.1, Chapter 2 (except 2.1 and ODL), 

Chapter 3 (except 3.2, 3.8), Chapter 4.1, 4.5, 4.6,  
Chapter 5 (except 5.10), Chapter 6.1, 6.2, 7.1, 7.3

`Mid Term will be in class closed book exam
aExtra Office Hours
`Surajit (Today) 4.50-5.50
`Yana Thu 4.30-5.30

aSolution to HW#1 available

Decomposition: Schema 
Design using FD

Reading: Chapter 3.6, Chapter 6.1, 
Chapter 6.2
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Review: Closure, Key, 
Superkey

aGiven a set of attributes M over R(A), and 
a set of Fds on R, closure(M) is the set of 
all attributes L such that M->L
aIf Closure(M) = A, then M is a superkey
aM is also a key if no proper subset M’ of 

M satisfies closure(M’)=A
`Superkey: A set of attributes containing key
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Review: BCNF
aA relation R(A) is in BCNF if for every nontrivial 

dependency X->Y on the relation R, X is a
superkey
`Every 2-column relation is in BCNF. Why?
`Relation in BCNF does not have update or deletion 

anomalies
aIf relation R(A) violates BCNF, decomposition is 

needed
`How to find a FD that violates BCNF?
`Check Closure(X) of every FD X->Y in the given set 

of dependency
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Decomposition Requires 
Care

CameraDoubleClick

CameraOneClick

GadgetGizmo

CategoryName

Camera29.99

Camera24.99

Gadget19.99

CategoryPrice

Camera29.99DoubleClick

Camera29.99OneClick

Camera24.99DoubleClick

Camera24.99OneClick

Gadget19.99Gizmo

Categor
yPriceName

When we put it back:

Cannot recover information
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Decomposition Strategy 
for BCNF

Find a FD that violates the BCNF condition (RHS = 
all nontrivial attributes functionality determined by LHS):

A , A , … A1 2 n
B , B , … B

1 2 m

A’sOthers B’s

R1 R2
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Example

aMovie (title, year, studio,president, pres_addr)
`S = {Title, year -> studio,                            

studio -> president, president->pres_addr}
aViolating FD: studio -> president, pres_addr
aDecompose: Studio1(studio, president, 

pres_addr), Movie1(title, year, studio)
aIs Studio1 in BCNF?
`What are applicable FD-s on Studio1?
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Projecting FD

aGiven F over R, what is the FD that must hold 
over R’, where R’ is obtained by decomposition?

aCompute closure(X) for each subset X of R’
aX-> B holds in S if
`B in R’
`B in closure(X)
`B not in X

aSee Examples 3.39 and 3.40 in text
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Example: Projecting FD

aR(A,B,C,D,E) decomposed into S(A,B,C) 
and ..
aFD on R: A->B, B->E, DE->C
aClosure(A) =? 
aClosure(B)=?
aClosure(C) = ?
aClosure({A,B}) =?
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Decomposition Based on BCNF is 
Information Preserving

Attributes   A, B, C.             FD:   A         C

Relations   R1[A,B]           R2[A,C]

Tuples in R1:   (a,b),      (a,b’)

Tuples in R2:   (a,c),       (a,c’)

Tuples in the join of R1,R2: (a,b,c), (a,b,c’), (a,b’,c), (a,b’,c’)

Can  (a,b,c’) be a bogus tuple?  What about (a,b’,c’) ?
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Decomposition into BCNF is 
Not Dependency Preserving

aStreet, city -> zip, zip -> city
aKey: (street,city), (street,zip) 
aConsider (Street,zip) and (zip,city)
`How to check street, city -> zip?
`Not dependency preserving!

a3NF
`Allow FD if LHS is part of a key (prime)
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Problems with 
Decompositions

aThere are three potential problems to consider:
� Some queries become more expensive.  
⌧e.g., find employee and department names

� Given instances of the decomposed relations, we 
may not be able to reconstruct the corresponding 
instance of the original relation!  
`Checking some dependencies may require joining 

the instances of the decomposed relations.
aTradeoff:   Must consider these issues vs. 

redundancy.

Summary of Schema 
Refinement

aIf a relation is in BCNF, it is free of redundancies that 
can be detected using FDs.

aIf a relation is not in BCNF, we can try to decompose 
it into a collection of BCNF relations:
`Lossless-join decomposition into BCNF is always possible
`Lossless-join, dependency preserving decomposition into 

BCNF is not always possible Lossless-join, dependency 
preserving decomposition into 3NF is always possible

`Decompositions should be carried out and/or re-examined 
while keeping performance requirements in mind.

`Various decompositions of a single schema are possible.

Constraints and Triggers

Reading: Section 6
(MidTerm: 6.1 and 6.2 only)
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Constraints

aA constraint = an assertion about the 
database that must be true at all times
aPart of the database schema
aCorrespond to invariants in programming 

languages
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Constraints
aCREATE TABLE movie_titles
`(title CHARACTER(30) NOT NULL,..)

aCREATE TABLE distributor
`(dist_name CHARACTER(30) UNIQUE,..)
`May be NULL

aCREATE TABLE movie_titles
`(title CHARACTER(30) PRIMARY KEY,..)
`Unique and not null

aCREATE TABLE movie_stars
`(movie_table CHARACTER(30) NOT NULL 

REFERENCES movie_titles,..)
`Many-one (mapping must exist) 18

SQL for Keys and Reference Keys

CREATE TABLE  Books (
isbn  CHAR(11),
title  CHAR(20),
pubname CHAR(25),
pubdate  DATE,
PRIMARY KEY  (isbn),
FOREIGN KEY (pubname) REFERENCES Publishers (name))



4

19

Declaring Keys and 
Foreign Keys

aComposite Key Syntax
`Primary Key (col1, col2)
`Unique (col3)

aForeign Key Syntax
`Foreign Key <attributes> REFERENCES 

<table> (<attributes>)
`Non-NULL value in Foreign Key must be 

present in the reference table
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Enforcing Constrainrts

aKey constraint
`Check on update/insert
`Use indexes for efficient validation

aReferential constraint
`Default: Reject modifications that violate constraint
`Cascade: Delete referencing rows
⌧Delete movie => movie_stars deleted

`Set Null: Set referencing column value to NULL
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Example

aCREATE TABLE Studio (
a..
apresC# INT REFERENCES 

MovieExec(cert#)
`ON DELETE SET NULL
`ON UPDATE CASCADE)
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CHECK Constraint

aCHECK(search-condition)
aLike Where clause in Selection queries
aValue-based check
`..CHECK (movie_type IN (‘Horror’, ‘Thriller’,..))

aSimple check
`.. CHECK (cost < 100 and cost > 0)
`Use to verify min/max/set of intervals

aComplex
`.. CHECK (cost < (select max(price) from 

Walmart_Store))
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ASSERTIONS

aNot attached to table declaration
aSpecifies a multi-table constraint
aCREATE ASSERTION max_inventory
`CHECK (( SELECT SUM(movie_cost) From Movies) + 

(SELECT SUM(music_cost) From Music) < 1000))

aDatabase must satisfy assertions at all times
`Tuple constraint enforced only when table is not 

empty
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Deferrable Constraints

aBy default, constraints are checked at the 
end of each SQL statement
aA DEFERRABLE constraint is checked only 

when the transaction is committed
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TRIGGERS

aTells what followup actions to take after 
execution of a SQL

aCREATE TRIGGER NetWorthTrigger
`AFTER UPDATE of networth ON MovieExec
`REFERENCING OLD AS ot NEW AS nt
`WHEN (ot.NetWorth > nt.NetWorth)
`UPDATE MovieExec
`SET NetWorth = ot. Networth
`WHERE …
`FOR EACH ROW .. Tuple vs. statement granularity
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Privileges, Users, Security

Reading: Chapter 7.4
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Granularity of AC

aGRANT privilege_list 
aON object
aTO user_list [WITH GRANT OPTION]
aPrivilege_list
`Select, Insert, Delete, Update, References, Usage

aObject
`Table, Columns, Views, Domains, Transactions..
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Examples

aGRANT SELECT ON movie_titles TO 
PUBLIC
aGRANT REFERENCES (title) ON 

movie_titles TO USER1
aGRANT SELECT ON movie to kirk
aWITH GRANT OPTION
aGRANT SELECT ON movie to Rob
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REVOKE

aREVOKE <privilege list> ON <database 
element> FROM <user list>
`CASCADE: All privileges granted based on 

revoked privileges are withdrawn
`RESTRICT: Allows execution of REVOKE only 

if there is no implied CASCADE

aREVOKE GRANT OPTION FOR ….
aFollow examples 7.24-7.26

Concurrency Control I:  
Transactions, Schedules, 

Anomalies
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Why Have Concurrent 
Processes?

aBetter throughput, response time
aDone via better utilization of resources:
`While one process is doing a disk read, another can 

be using the CPU or reading another disk.

aDANGER DANGER! Concurrency could lead 
to incorrectness!
`Must carefully manage concurrent data access.
`There’s (much!) more here than the usual OS tricks!

Transactions

aBasic concurrency/recovery concept: a
transaction (Xact).
`A sequence of many actions which are 

considered to be one atomic unit of work.

aDBMS “actions”:
`(disk) reads, (disk) writes
`Special actions: commit, abort

The ACID Properties

aA tomicity: All actions in the Xact happen, or 
none happen.

aC onsistency: If each Xact is consistent, and 
the DB starts consistent, it ends up consistent.

a I solation: Execution of one Xact is isolated 
from that of other Xacts.

aDurability: If a Xact commits, its effects persist.

Passing the ACID Test

aConcurrency Control
`Guarantees Consistency and Isolation, given 

Atomicity.

aLogging and Recovery
`Guarantees Atomicity and Durability.

aWe’ll do C. C. first:
`What problems could arise?
`What is acceptable behavior?
`How do we guarantee acceptable behavior?

Schedules

aSchedule: An interleaving of actions 
from a set of Xacts, where the actions 
of any 1 Xact are in the original order.
`Represents some actual sequence of 

database actions.
`Example: R1(A), W1(A), R2(B), W2(B), 

R1(C), W1(C)
`In a complete schedule, each Xact ends in 

commit or abort.
aInitial State + Schedule → Final State

T1 T2

R(A)

W(A)

R(B)

W(B)

R(C)

W(C)

Acceptable Schedules

aOne sensible “isolated, consistent” schedule:
`Run Xacts one at a time, in a series.
`This is called a serial schedule.
`NOTE: Different serial schedules can have different 

final states;  all are “OK” -- DBMS makes no guarantees 
about the order in which concurrently submitted Xacts 
are executed.

aSerializable schedules:
`Final state is what some serial schedule would have 

produced.
`Aborted Xacts are not part of schedule; ignore them for 

now (they are made to `disappear’ by using logging).



7

37

Transactions: 
Serializability

time

processes

quantity=4

order(3)

order(3)

Read: q=4

Read: q=4

Write: 1

quantity=-2 ????

Write: -2

t1 t2 t3 t4

OK

OK

Serializability Violations

aTwo actions may conflict when 2 
xacts access the same item:
`W-R conflict: T2 reads something 

T1 wrote; T1 still active
`R-W and W-W conflicts:        

Similar.
aWR conflict (dirty read):
`Result is not equal to any serial 

execution!
`T2 reads what T1 wrote, but it 

shouldn’t have!!

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

Commit

R(B)

W(B)

Commit

transfer
$100 from
A to B

add 6%
interest to
A & B

Database is
inconsistent!

More Conflicts

aRW Conflicts (Unrepeatable Read)
`T2 overwrites what T1 read.

`Again, not equivalent to a serial execution.
aWW Conflicts (Lost Update)
`T2 overwrites what T1 wrote.

`Usually occurs with RW or WR anomalies.
⌧Unless you have “blind writes” (as here).

T1: R(A), R(A), C
T2: R(A), W(A), C

T1: W(A), W(B), C
T2: W(A), W(B), C

Now, Aborted Transactions

aSerializable schedule: Equivalent to a 
serial schedule of committed Xacts.
`as if aborted Xacts never happened.

aTwo Issues:
`How does one undo the effects of a xact?
⌧We’ll cover this in logging/recovery

`What if another Xact sees these effects??
⌧Must undo that Xact as well!

Cascading Aborts

aAbort of T1 requires abort of T2!
`Cascading Abort

aWhat about WW conflicts & aborts?
`T2 overwrites a value that T1 writes.
`T1 aborts: its “remembered” values are restored.
`Lose T2’s write!  We will see how to solve this, too.

aAn ACA (avoids cascading abort)
schedule is one in which cascading abort cannot 
arise:
`A Xact only reads data from committed Xacts.

T1 T2

R(A)

W(A)

R(A)

W(A)

abort

Recoverable Schedules

aAbort of T1 requires abort of T2!
`But T2 has already committed!

aA recoverable schedule is one in
which this cannot happen.
`i.e., a Xact commits only after all the Xacts it reads 

from commit.
`ACA implies Recoverable (but not vice-versa!).

aReal systems typically ensure that only 
recoverable schedules arise (through locking).

T1 T2

R(A)

W(A)

R(A)

W(A)

commit

abort
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COMMIT and ROLLBACK

aCan end a database operation in two 
ways:
`EXEC SQL COMMIT;
`EXEC SQL ROLLBACK;


